organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

An inhibitor of Janus kinase 3: 4-(4-hydroxyphenylamino)-6,7-dimethoxyquinazolin-1-ium chloride methanol solvate

Elise A. Sudbeck,^{a,b}* Jason D. Jennissen,^b Xing-Ping Liu^{a,c} and Fatih M. Uckun^{a,d}

^aDrug Discovery Program, ^bDepartment of Structural Biology, ^cDepartment of Chemistry, and ^dParker Hughes Cancer Center, Parker Hughes Institute, 2665 Long Lake Road, Suite 330, St Paul, Minnesota, USA Correspondence e-mail: esudbeck@ih.org

Received 1 February 2000 Accepted 22 May 2000

The crystal structure of the title compound, $C_{16}H_{16}N_3O_3^+$.-Cl⁻·CH₄O (WHI-P131, an inhibitor of Janus kinase 3), contains four hydrogen bonds. There are two hydrogen bonds within the asymmetric unit, *i.e.* interactions between WHI-P131 OH and Cl⁻, and between methanol and Cl⁻. There is a third interaction between WHI-P131 NH and Cl⁻ (related by a 2₁ screw) and a fourth between WHI-P131 NH and methanol (related by an *n*-glide). The hydrogen-bond pattern for these interactions can be described by the first-level hydrogen-bond graph-set notation $D_1^1(2)D_1^1(2)D_1^1(2)D_1^1(2)$. The second-level graph-set notation (for combinations of two hydrogen bonds) was determined to be $D_2^1(3)D_2^1(3)D_2^2(4)D_2^2(9)D_2^2(14)C_2^1(9)$.

Comment

The title compound, WHI-P131 (Fig. 1), inhibited the kinase activity of Janus kinase 3 (JAK3), with an IC_{50} of 9.1 μM (Sudbeck *et al.*, 1999). Although WHI-P131 inhibited JAK3, it did not inhibit the Janus kinases JAK1 and JAK2, the ZAP/ SYK family tyrosine kinase SYK, the TEC family tyrosine kinase BTK, the SRC family tyrosine kinase LYN or the receptor family tyrosine kinase IRK, even at concentrations as

high as $350 \ \mu M$. The relatively high potency and selectivity of WHI-P131 for JAK3 makes it a promising candidate for new treatment strategies against acute lymphoblastic leukemia, the most common form of childhood cancer. In addition to its antileukemic properties, WHI-P131 also shows clinical

potential for the treatment of mast-cell-mediated immediate hypersensitivity reactions and allergic disorders (Malaviya *et al.*, 1999).

The crystal structure of WHI-P131 contains four different hydrogen bonds: N1-H1···O4, N4-H4···Cl1, O3-H3···Cl1 and O4-H26···Cl1 (Fig. 2 and Table 2). Each of these can be described in graph-set notation (Bernstein *et al.*, 1990, 1995; Etter, 1990, 1991; Etter *et al.*, 1990) as $D_1^1(2)$ (Fig. 2). The second-level motif combining the N1-H1···O4 and N4-H4···Cl1 hydrogen bonds is $D_2^2(9)$, that combining

Figure 1

The X-ray crystal structure of WHI-P131 (30% probability displacement ellipsoids, T = 297 K).

Figure 2

Hydrogen-bond patterns observed in WHI-P131. Four hydrogen bonds (labeled 1–4) are observed in the crystal structure. The complete first-level hydrogen-bond graph-set pattern is $D_1^1(2)D_1^1(2)D_1^1(2)D_1^1(2)D_1^1(2)$ and the second-level pattern is $D_2^1(3)D_2^2(4)D_2^2(9)D_2^2(14)C_2^1(9)$.

N4-H4···Cl1 and O3-H3···Cl1 is $C_2^1(9)$, and that combining N1-H1···O4 and O3-H3···Cl1 is $D_2^2(14)$. The combination of N1-H1···O4 and O4-H26···Cl1 can be described as a $D_2^2(4)$ pattern, N4-H4···Cl1 plus O4-H26···Cl1 forms a $D_2^1(3)$ pattern, and O3-H3···Cl1 plus O4-H26···Cl1 is $D_2^1(3)$. The complete first-level hydrogenbond graph-set notation for WHI-P131 is $D_1^1(2)D_1^1(2)D_1^1(2)$ - $D_1^1(2)$ and the second-level graph-set notation (for combinations of two hydrogen bonds) is $D_2^1(3)D_2^1(3)D_2^2(4)D_2^2(9)$ - $D_2^2(14)C_2^1(9)$.

An alternative way to describe the two-dimensional hydrogen-bonded network in the crystal of WHI-P131 is $C_2^1(9)C_3^2(15)$, which combines the second-level motif for N4— H4…Cl1 and O3—H3…Cl1, $C_2^1(9)$, and the third-level motif for O4—H16…Cl1, O3—H3…Cl1 and N1—H1…O4, $C_3^2(15)$.

Experimental

Yellow needles of WHI-P131 were grown from methanol/dichloromethane by vapor diffusion at room temperature. The hydrochloride salt crystallized as a methanol solvate.

Crystal data

$C_{16}H_{16}N_3O_3^+ \cdot Cl^- \cdot CH_4O$	$D_x = 1.374 \text{ Mg m}^{-3}$
$M_r = 365.81$	Mo $K\alpha$ radiation
Monoclinic, P2 ₁ /n	Cell parameters from 2622
a = 7.4128 (7) Å	reflections
b = 10.7752 (10) Å	$\theta = 2.64 - 25.01^{\circ}$
c = 22.337(2) Å	$\mu = 0.243 \text{ mm}^{-1}$
$\beta = 97.538(2)^{\circ}$	T = 297 (2) K
V = 1768.8 (3) Å ³	Needle, yellow
Z = 4	$0.45 \times 0.15 \times 0.12 \text{ mm}$
Data collection	
CCD area-detector diffractometer	$R_{\rm int} = 0.050$
φ and ω scans	$\theta_{\rm max} = 25^{\circ}$
Absorption correction: empirical	$h = -8 \rightarrow 8$
(SADABS; Sheldrick, 1996)	$k = -12 \rightarrow 12$
$T_{\min} = 0.90, T_{\max} = 0.97$	$l = -26 \rightarrow 22$
8982 measured reflections	101 standard reflections
3117 independent reflections	intensity decay: -0.06%
2087 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.048$
$wR(F^2) = 0.12$
S = 0.99
3117 reflections
239 parameters

Table 1

Selected geometric parameters (Å, °).

N3-C2	1.303 (3)	O4-C20	1.404 (4)
N3-C4	1.356 (3)	N4-C4	1.330 (3)
O3-C14	1.375 (3)	N4-C11	1.433 (3)
C17 - O1 - C6 - C5 C18 - O2 - C7 - C8	7.6(4)	C4-N4-C11-C16	-38.2 (4)
010-02-07-00	5.4 (5)		

H atoms treated by a mixture of independent and constrained

 $w = 1/[\sigma^2(F_o^2) + (0.0672P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

refinement

 $(\Delta/\sigma)_{\rm max} = 0.003$

 $\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O4-H26\cdots Cl1$ $O3-H3\cdots Cl1$			3.024 (2) 3.064 (2)	
$\begin{array}{c} N1 {-} H1 {\cdots} O4^i \\ N4 {-} H4 {\cdots} Cl1^{ii} \end{array}$	0.93 (3) 0.88 (3)	1.81 (3) 2.39 (3)	2.742 (3) 3.206 (2)	179 (2) 155 (2)

Symmetry codes: (i) $x - \frac{1}{2}, \frac{1}{2} - y, \frac{1}{2} + z$; (ii) $\frac{1}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z$.

Table 3

First- and second-level graph-set motifs for hydrogen bonds in WHI-P131.

	O4−H26···Cl1	O3−H3···Cl1	N1-H1···O4	N4-H4···Cl1
$\begin{array}{c} O4-H26\cdots Cl1\\ O3-H3\cdots Cl1\\ N1-H1\cdots O4\\ N4-H4\cdots Cl1 \end{array}$	$D_1^1(2)$	$D_2^1(3) \\ D_1^1(2)$	$D_2^2(4)$ $D_2^2(14)$ $D_1^1(2)$	$D_2^1(3) \\ C_1^2(9) \\ D_2^2(9) \\ D_1^1(2)$

H atoms were placed at calculated positions, except for H1 and H4, which were located in the electron-density difference map and were refined isotropically. The hydroxyl H3 and H26 atoms were not observed in the electron-density map but were included at calculated positions based on an assessment of the best hydrogen-bond interactions to nearby N, O or Cl atoms.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SHELXTL* (Bruker, 1998); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1527). Services for accessing these data are described at the back of the journal.

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bernstein, J., Etter, M. C. & MacDonald, J. C. (1990). J. Chem. Soc. Perkin Trans. 2, pp. 695–698.

Bruker (1998). SAINT, SMART and SHELXTL/NT (Version 5.1) Software Reference Manuals. Bruker AXS Inc., Madison, Wisconsin, USA.

- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Etter, M. C. (1991). J. Phys. Chem. 95, 4601-4610.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Malaviya, R., Zhu, D., Dibirdik, I. & Uckun, F. M. (1999). J. Biol. Chem. 274, 27028–27038.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sudbeck, E. A., Liu, X.-P., Narla, R. K., Mahajan, S., Ghosh, S., Mao, C. & Uckun, F. M. (1999). *Clin. Cancer Res.* 5, 1569–1582.